1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762 |
- // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
- // Use of this source code is governed by a MIT license found in the LICENSE file.
-
- package codec
-
- import (
- "encoding"
- "errors"
- "fmt"
- "io"
- "reflect"
- "runtime"
- "sort"
- "strconv"
- "time"
- )
-
- // defEncByteBufSize is the default size of []byte used
- // for bufio buffer or []byte (when nil passed)
- const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
-
- var errEncoderNotInitialized = errors.New("Encoder not initialized")
-
- /*
-
- // encWriter abstracts writing to a byte array or to an io.Writer.
- //
- //
- // Deprecated: Use encWriterSwitch instead.
- type encWriter interface {
- writeb([]byte)
- writestr(string)
- writen1(byte)
- writen2(byte, byte)
- end()
- }
-
- */
-
- // encDriver abstracts the actual codec (binc vs msgpack, etc)
- type encDriver interface {
- EncodeNil()
- EncodeInt(i int64)
- EncodeUint(i uint64)
- EncodeBool(b bool)
- EncodeFloat32(f float32)
- EncodeFloat64(f float64)
- // encodeExtPreamble(xtag byte, length int)
- EncodeRawExt(re *RawExt, e *Encoder)
- EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
- // Deprecated: try to use EncodeStringEnc instead
- EncodeString(c charEncoding, v string)
- // c cannot be cRAW
- EncodeStringEnc(c charEncoding, v string)
- // EncodeSymbol(v string)
- // Deprecated: try to use EncodeStringBytesRaw instead
- EncodeStringBytes(c charEncoding, v []byte)
- EncodeStringBytesRaw(v []byte)
- EncodeTime(time.Time)
- //encBignum(f *big.Int)
- //encStringRunes(c charEncoding, v []rune)
- WriteArrayStart(length int)
- WriteArrayElem()
- WriteArrayEnd()
- WriteMapStart(length int)
- WriteMapElemKey()
- WriteMapElemValue()
- WriteMapEnd()
-
- reset()
- atEndOfEncode()
- }
-
- type encDriverAsis interface {
- EncodeAsis(v []byte)
- }
-
- type encodeError struct {
- codecError
- }
-
- func (e encodeError) Error() string {
- return fmt.Sprintf("%s encode error: %v", e.name, e.err)
- }
-
- type encDriverNoopContainerWriter struct{}
-
- func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
- func (encDriverNoopContainerWriter) WriteArrayElem() {}
- func (encDriverNoopContainerWriter) WriteArrayEnd() {}
- func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
- func (encDriverNoopContainerWriter) WriteMapElemKey() {}
- func (encDriverNoopContainerWriter) WriteMapElemValue() {}
- func (encDriverNoopContainerWriter) WriteMapEnd() {}
- func (encDriverNoopContainerWriter) atEndOfEncode() {}
-
- type encDriverTrackContainerWriter struct {
- c containerState
- }
-
- func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
- func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
- func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
- func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
- func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
- func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
- func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
- func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
-
- // type ioEncWriterWriter interface {
- // WriteByte(c byte) error
- // WriteString(s string) (n int, err error)
- // Write(p []byte) (n int, err error)
- // }
-
- // EncodeOptions captures configuration options during encode.
- type EncodeOptions struct {
- // WriterBufferSize is the size of the buffer used when writing.
- //
- // if > 0, we use a smart buffer internally for performance purposes.
- WriterBufferSize int
-
- // ChanRecvTimeout is the timeout used when selecting from a chan.
- //
- // Configuring this controls how we receive from a chan during the encoding process.
- // - If ==0, we only consume the elements currently available in the chan.
- // - if <0, we consume until the chan is closed.
- // - If >0, we consume until this timeout.
- ChanRecvTimeout time.Duration
-
- // StructToArray specifies to encode a struct as an array, and not as a map
- StructToArray bool
-
- // Canonical representation means that encoding a value will always result in the same
- // sequence of bytes.
- //
- // This only affects maps, as the iteration order for maps is random.
- //
- // The implementation MAY use the natural sort order for the map keys if possible:
- //
- // - If there is a natural sort order (ie for number, bool, string or []byte keys),
- // then the map keys are first sorted in natural order and then written
- // with corresponding map values to the strema.
- // - If there is no natural sort order, then the map keys will first be
- // encoded into []byte, and then sorted,
- // before writing the sorted keys and the corresponding map values to the stream.
- //
- Canonical bool
-
- // CheckCircularRef controls whether we check for circular references
- // and error fast during an encode.
- //
- // If enabled, an error is received if a pointer to a struct
- // references itself either directly or through one of its fields (iteratively).
- //
- // This is opt-in, as there may be a performance hit to checking circular references.
- CheckCircularRef bool
-
- // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
- // when checking if a value is empty.
- //
- // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
- RecursiveEmptyCheck bool
-
- // Raw controls whether we encode Raw values.
- // This is a "dangerous" option and must be explicitly set.
- // If set, we blindly encode Raw values as-is, without checking
- // if they are a correct representation of a value in that format.
- // If unset, we error out.
- Raw bool
-
- // // AsSymbols defines what should be encoded as symbols.
- // //
- // // Encoding as symbols can reduce the encoded size significantly.
- // //
- // // However, during decoding, each string to be encoded as a symbol must
- // // be checked to see if it has been seen before. Consequently, encoding time
- // // will increase if using symbols, because string comparisons has a clear cost.
- // //
- // // Sample values:
- // // AsSymbolNone
- // // AsSymbolAll
- // // AsSymbolMapStringKeys
- // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
- // AsSymbols AsSymbolFlag
- }
-
- // ---------------------------------------------
-
- /*
-
- type ioEncStringWriter interface {
- WriteString(s string) (n int, err error)
- }
-
- // ioEncWriter implements encWriter and can write to an io.Writer implementation
- type ioEncWriter struct {
- w io.Writer
- ww io.Writer
- bw io.ByteWriter
- sw ioEncStringWriter
- fw ioFlusher
- b [8]byte
- }
-
- func (z *ioEncWriter) reset(w io.Writer) {
- z.w = w
- var ok bool
- if z.bw, ok = w.(io.ByteWriter); !ok {
- z.bw = z
- }
- if z.sw, ok = w.(ioEncStringWriter); !ok {
- z.sw = z
- }
- z.fw, _ = w.(ioFlusher)
- z.ww = w
- }
-
- func (z *ioEncWriter) WriteByte(b byte) (err error) {
- z.b[0] = b
- _, err = z.w.Write(z.b[:1])
- return
- }
-
- func (z *ioEncWriter) WriteString(s string) (n int, err error) {
- return z.w.Write(bytesView(s))
- }
-
- func (z *ioEncWriter) writeb(bs []byte) {
- if _, err := z.ww.Write(bs); err != nil {
- panic(err)
- }
- }
-
- func (z *ioEncWriter) writestr(s string) {
- if _, err := z.sw.WriteString(s); err != nil {
- panic(err)
- }
- }
-
- func (z *ioEncWriter) writen1(b byte) {
- if err := z.bw.WriteByte(b); err != nil {
- panic(err)
- }
- }
-
- func (z *ioEncWriter) writen2(b1, b2 byte) {
- var err error
- if err = z.bw.WriteByte(b1); err == nil {
- if err = z.bw.WriteByte(b2); err == nil {
- return
- }
- }
- panic(err)
- }
-
- // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
- // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
- // if _, err := z.ww.Write(z.b[:5]); err != nil {
- // panic(err)
- // }
- // }
-
- //go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
- func (z *ioEncWriter) end() {
- if z.fw != nil {
- if err := z.fw.Flush(); err != nil {
- panic(err)
- }
- }
- }
-
- */
-
- // ---------------------------------------------
-
- // bufioEncWriter
- type bufioEncWriter struct {
- buf []byte
- w io.Writer
- n int
- sz int // buf size
-
- // Extensions can call Encode() within a current Encode() call.
- // We need to know when the top level Encode() call returns,
- // so we can decide whether to Release() or not.
- calls uint16 // what depth in mustDecode are we in now.
-
- _ [6]uint8 // padding
-
- bytesBufPooler
-
- _ [1]uint64 // padding
- // a int
- // b [4]byte
- // err
- }
-
- func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
- z.w = w
- z.n = 0
- z.calls = 0
- if bufsize <= 0 {
- bufsize = defEncByteBufSize
- }
- z.sz = bufsize
- if cap(z.buf) >= bufsize {
- z.buf = z.buf[:cap(z.buf)]
- } else {
- z.buf = z.bytesBufPooler.get(bufsize)
- // z.buf = make([]byte, bufsize)
- }
- }
-
- func (z *bufioEncWriter) release() {
- z.buf = nil
- z.bytesBufPooler.end()
- }
-
- //go:noinline - flush only called intermittently
- func (z *bufioEncWriter) flush() {
- n, err := z.w.Write(z.buf[:z.n])
- z.n -= n
- if z.n > 0 && err == nil {
- err = io.ErrShortWrite
- }
- if err != nil {
- if n > 0 && z.n > 0 {
- copy(z.buf, z.buf[n:z.n+n])
- }
- panic(err)
- }
- }
-
- func (z *bufioEncWriter) writeb(s []byte) {
- LOOP:
- a := len(z.buf) - z.n
- if len(s) > a {
- z.n += copy(z.buf[z.n:], s[:a])
- s = s[a:]
- z.flush()
- goto LOOP
- }
- z.n += copy(z.buf[z.n:], s)
- }
-
- func (z *bufioEncWriter) writestr(s string) {
- // z.writeb(bytesView(s)) // inlined below
- LOOP:
- a := len(z.buf) - z.n
- if len(s) > a {
- z.n += copy(z.buf[z.n:], s[:a])
- s = s[a:]
- z.flush()
- goto LOOP
- }
- z.n += copy(z.buf[z.n:], s)
- }
-
- func (z *bufioEncWriter) writen1(b1 byte) {
- if 1 > len(z.buf)-z.n {
- z.flush()
- }
- z.buf[z.n] = b1
- z.n++
- }
-
- func (z *bufioEncWriter) writen2(b1, b2 byte) {
- if 2 > len(z.buf)-z.n {
- z.flush()
- }
- z.buf[z.n+1] = b2
- z.buf[z.n] = b1
- z.n += 2
- }
-
- func (z *bufioEncWriter) end() {
- if z.n > 0 {
- z.flush()
- }
- }
-
- // ---------------------------------------------
-
- // bytesEncAppender implements encWriter and can write to an byte slice.
- type bytesEncAppender struct {
- b []byte
- out *[]byte
- }
-
- func (z *bytesEncAppender) writeb(s []byte) {
- z.b = append(z.b, s...)
- }
- func (z *bytesEncAppender) writestr(s string) {
- z.b = append(z.b, s...)
- }
- func (z *bytesEncAppender) writen1(b1 byte) {
- z.b = append(z.b, b1)
- }
- func (z *bytesEncAppender) writen2(b1, b2 byte) {
- z.b = append(z.b, b1, b2)
- }
- func (z *bytesEncAppender) end() {
- *(z.out) = z.b
- }
- func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
- z.b = in[:0]
- z.out = out
- }
-
- // ---------------------------------------------
-
- func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
- e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
- }
-
- func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
- e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
- }
-
- func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
- rv2i(rv).(Selfer).CodecEncodeSelf(e)
- }
-
- func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
- bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
- e.marshalRaw(bs, fnerr)
- }
-
- func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
- bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
- e.marshalUtf8(bs, fnerr)
- }
-
- func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
- bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
- e.marshalAsis(bs, fnerr)
- }
-
- func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
- e.rawBytes(rv2i(rv).(Raw))
- }
-
- func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
- e.e.EncodeNil()
- }
-
- func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
- e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
- }
-
- func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
- ti := f.ti
- ee := e.e
- // array may be non-addressable, so we have to manage with care
- // (don't call rv.Bytes, rv.Slice, etc).
- // E.g. type struct S{B [2]byte};
- // Encode(S{}) will bomb on "panic: slice of unaddressable array".
- if f.seq != seqTypeArray {
- if rv.IsNil() {
- ee.EncodeNil()
- return
- }
- // If in this method, then there was no extension function defined.
- // So it's okay to treat as []byte.
- if ti.rtid == uint8SliceTypId {
- ee.EncodeStringBytesRaw(rv.Bytes())
- return
- }
- }
- if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
- e.errorf("send-only channel cannot be encoded")
- }
- elemsep := e.esep
- rtelem := ti.elem
- rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
- var l int
- // if a slice, array or chan of bytes, treat specially
- if rtelemIsByte {
- switch f.seq {
- case seqTypeSlice:
- ee.EncodeStringBytesRaw(rv.Bytes())
- case seqTypeArray:
- l = rv.Len()
- if rv.CanAddr() {
- ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
- } else {
- var bs []byte
- if l <= cap(e.b) {
- bs = e.b[:l]
- } else {
- bs = make([]byte, l)
- }
- reflect.Copy(reflect.ValueOf(bs), rv)
- ee.EncodeStringBytesRaw(bs)
- }
- case seqTypeChan:
- // do not use range, so that the number of elements encoded
- // does not change, and encoding does not hang waiting on someone to close chan.
- // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
- // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
-
- if rv.IsNil() {
- ee.EncodeNil()
- break
- }
- bs := e.b[:0]
- irv := rv2i(rv)
- ch, ok := irv.(<-chan byte)
- if !ok {
- ch = irv.(chan byte)
- }
-
- L1:
- switch timeout := e.h.ChanRecvTimeout; {
- case timeout == 0: // only consume available
- for {
- select {
- case b := <-ch:
- bs = append(bs, b)
- default:
- break L1
- }
- }
- case timeout > 0: // consume until timeout
- tt := time.NewTimer(timeout)
- for {
- select {
- case b := <-ch:
- bs = append(bs, b)
- case <-tt.C:
- // close(tt.C)
- break L1
- }
- }
- default: // consume until close
- for b := range ch {
- bs = append(bs, b)
- }
- }
-
- ee.EncodeStringBytesRaw(bs)
- }
- return
- }
-
- // if chan, consume chan into a slice, and work off that slice.
- if f.seq == seqTypeChan {
- rvcs := reflect.Zero(reflect.SliceOf(rtelem))
- timeout := e.h.ChanRecvTimeout
- if timeout < 0 { // consume until close
- for {
- recv, recvOk := rv.Recv()
- if !recvOk {
- break
- }
- rvcs = reflect.Append(rvcs, recv)
- }
- } else {
- cases := make([]reflect.SelectCase, 2)
- cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
- if timeout == 0 {
- cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
- } else {
- tt := time.NewTimer(timeout)
- cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
- }
- for {
- chosen, recv, recvOk := reflect.Select(cases)
- if chosen == 1 || !recvOk {
- break
- }
- rvcs = reflect.Append(rvcs, recv)
- }
- }
- rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
- }
-
- l = rv.Len()
- if ti.mbs {
- if l%2 == 1 {
- e.errorf("mapBySlice requires even slice length, but got %v", l)
- return
- }
- ee.WriteMapStart(l / 2)
- } else {
- ee.WriteArrayStart(l)
- }
-
- if l > 0 {
- var fn *codecFn
- for rtelem.Kind() == reflect.Ptr {
- rtelem = rtelem.Elem()
- }
- // if kind is reflect.Interface, do not pre-determine the
- // encoding type, because preEncodeValue may break it down to
- // a concrete type and kInterface will bomb.
- if rtelem.Kind() != reflect.Interface {
- fn = e.h.fn(rtelem, true, true)
- }
- for j := 0; j < l; j++ {
- if elemsep {
- if ti.mbs {
- if j%2 == 0 {
- ee.WriteMapElemKey()
- } else {
- ee.WriteMapElemValue()
- }
- } else {
- ee.WriteArrayElem()
- }
- }
- e.encodeValue(rv.Index(j), fn, true)
- }
- }
-
- if ti.mbs {
- ee.WriteMapEnd()
- } else {
- ee.WriteArrayEnd()
- }
- }
-
- func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
- fti := f.ti
- tisfi := fti.sfiSrc
- toMap := !(fti.toArray || e.h.StructToArray)
- if toMap {
- tisfi = fti.sfiSort
- }
-
- ee := e.e
-
- sfn := structFieldNode{v: rv, update: false}
- if toMap {
- ee.WriteMapStart(len(tisfi))
- if e.esep {
- for _, si := range tisfi {
- ee.WriteMapElemKey()
- // ee.EncodeStringEnc(cUTF8, si.encName)
- e.kStructFieldKey(fti.keyType, si)
- ee.WriteMapElemValue()
- e.encodeValue(sfn.field(si), nil, true)
- }
- } else {
- for _, si := range tisfi {
- // ee.EncodeStringEnc(cUTF8, si.encName)
- e.kStructFieldKey(fti.keyType, si)
- e.encodeValue(sfn.field(si), nil, true)
- }
- }
- ee.WriteMapEnd()
- } else {
- ee.WriteArrayStart(len(tisfi))
- if e.esep {
- for _, si := range tisfi {
- ee.WriteArrayElem()
- e.encodeValue(sfn.field(si), nil, true)
- }
- } else {
- for _, si := range tisfi {
- e.encodeValue(sfn.field(si), nil, true)
- }
- }
- ee.WriteArrayEnd()
- }
- }
-
- func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
- var m must
- // use if-else-if, not switch (which compiles to binary-search)
- // since keyType is typically valueTypeString, branch prediction is pretty good.
- if keyType == valueTypeString {
- if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
- e.w.writen1('"')
- e.w.writestr(s.encName)
- e.w.writen1('"')
- } else { // keyType == valueTypeString
- e.e.EncodeStringEnc(cUTF8, s.encName)
- }
- } else if keyType == valueTypeInt {
- e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
- } else if keyType == valueTypeUint {
- e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
- } else if keyType == valueTypeFloat {
- e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
- }
- }
-
- func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
- var m must
- // use if-else-if, not switch (which compiles to binary-search)
- // since keyType is typically valueTypeString, branch prediction is pretty good.
- if keyType == valueTypeString {
- e.e.EncodeStringEnc(cUTF8, encName)
- } else if keyType == valueTypeInt {
- e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
- } else if keyType == valueTypeUint {
- e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
- } else if keyType == valueTypeFloat {
- e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
- }
- }
-
- func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
- fti := f.ti
- elemsep := e.esep
- tisfi := fti.sfiSrc
- var newlen int
- toMap := !(fti.toArray || e.h.StructToArray)
- var mf map[string]interface{}
- if f.ti.mf {
- mf = rv2i(rv).(MissingFielder).CodecMissingFields()
- toMap = true
- newlen += len(mf)
- } else if f.ti.mfp {
- if rv.CanAddr() {
- mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
- } else {
- // make a new addressable value of same one, and use it
- rv2 := reflect.New(rv.Type())
- rv2.Elem().Set(rv)
- mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
- }
- toMap = true
- newlen += len(mf)
- }
- // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
- if toMap {
- tisfi = fti.sfiSort
- }
- newlen += len(tisfi)
- ee := e.e
-
- // Use sync.Pool to reduce allocating slices unnecessarily.
- // The cost of sync.Pool is less than the cost of new allocation.
- //
- // Each element of the array pools one of encStructPool(8|16|32|64).
- // It allows the re-use of slices up to 64 in length.
- // A performance cost of encoding structs was collecting
- // which values were empty and should be omitted.
- // We needed slices of reflect.Value and string to collect them.
- // This shared pool reduces the amount of unnecessary creation we do.
- // The cost is that of locking sometimes, but sync.Pool is efficient
- // enough to reduce thread contention.
-
- // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
- var spool sfiRvPooler
- var fkvs = spool.get(newlen)
-
- var kv sfiRv
- recur := e.h.RecursiveEmptyCheck
- sfn := structFieldNode{v: rv, update: false}
- newlen = 0
- for _, si := range tisfi {
- // kv.r = si.field(rv, false)
- kv.r = sfn.field(si)
- if toMap {
- if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
- continue
- }
- kv.v = si // si.encName
- } else {
- // use the zero value.
- // if a reference or struct, set to nil (so you do not output too much)
- if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
- switch kv.r.Kind() {
- case reflect.Struct, reflect.Interface, reflect.Ptr,
- reflect.Array, reflect.Map, reflect.Slice:
- kv.r = reflect.Value{} //encode as nil
- }
- }
- }
- fkvs[newlen] = kv
- newlen++
- }
- fkvs = fkvs[:newlen]
-
- var mflen int
- for k, v := range mf {
- if k == "" {
- delete(mf, k)
- continue
- }
- if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
- delete(mf, k)
- continue
- }
- mflen++
- }
-
- var j int
- if toMap {
- ee.WriteMapStart(newlen + mflen)
- if elemsep {
- for j = 0; j < len(fkvs); j++ {
- kv = fkvs[j]
- ee.WriteMapElemKey()
- // ee.EncodeStringEnc(cUTF8, kv.v)
- e.kStructFieldKey(fti.keyType, kv.v)
- ee.WriteMapElemValue()
- e.encodeValue(kv.r, nil, true)
- }
- } else {
- for j = 0; j < len(fkvs); j++ {
- kv = fkvs[j]
- // ee.EncodeStringEnc(cUTF8, kv.v)
- e.kStructFieldKey(fti.keyType, kv.v)
- e.encodeValue(kv.r, nil, true)
- }
- }
- // now, add the others
- for k, v := range mf {
- ee.WriteMapElemKey()
- e.kStructFieldKeyName(fti.keyType, k)
- ee.WriteMapElemValue()
- e.encode(v)
- }
- ee.WriteMapEnd()
- } else {
- ee.WriteArrayStart(newlen)
- if elemsep {
- for j = 0; j < len(fkvs); j++ {
- ee.WriteArrayElem()
- e.encodeValue(fkvs[j].r, nil, true)
- }
- } else {
- for j = 0; j < len(fkvs); j++ {
- e.encodeValue(fkvs[j].r, nil, true)
- }
- }
- ee.WriteArrayEnd()
- }
-
- // do not use defer. Instead, use explicit pool return at end of function.
- // defer has a cost we are trying to avoid.
- // If there is a panic and these slices are not returned, it is ok.
- spool.end()
- }
-
- func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
- ee := e.e
- if rv.IsNil() {
- ee.EncodeNil()
- return
- }
-
- l := rv.Len()
- ee.WriteMapStart(l)
- if l == 0 {
- ee.WriteMapEnd()
- return
- }
- // var asSymbols bool
- // determine the underlying key and val encFn's for the map.
- // This eliminates some work which is done for each loop iteration i.e.
- // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
- //
- // However, if kind is reflect.Interface, do not pre-determine the
- // encoding type, because preEncodeValue may break it down to
- // a concrete type and kInterface will bomb.
- var keyFn, valFn *codecFn
- ti := f.ti
- rtkey0 := ti.key
- rtkey := rtkey0
- rtval0 := ti.elem
- rtval := rtval0
- // rtkeyid := rt2id(rtkey0)
- for rtval.Kind() == reflect.Ptr {
- rtval = rtval.Elem()
- }
- if rtval.Kind() != reflect.Interface {
- valFn = e.h.fn(rtval, true, true)
- }
- mks := rv.MapKeys()
-
- if e.h.Canonical {
- e.kMapCanonical(rtkey, rv, mks, valFn)
- ee.WriteMapEnd()
- return
- }
-
- var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
- if !keyTypeIsString {
- for rtkey.Kind() == reflect.Ptr {
- rtkey = rtkey.Elem()
- }
- if rtkey.Kind() != reflect.Interface {
- // rtkeyid = rt2id(rtkey)
- keyFn = e.h.fn(rtkey, true, true)
- }
- }
-
- // for j, lmks := 0, len(mks); j < lmks; j++ {
- for j := range mks {
- if e.esep {
- ee.WriteMapElemKey()
- }
- if keyTypeIsString {
- ee.EncodeStringEnc(cUTF8, mks[j].String())
- } else {
- e.encodeValue(mks[j], keyFn, true)
- }
- if e.esep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
-
- }
- ee.WriteMapEnd()
- }
-
- func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
- ee := e.e
- elemsep := e.esep
- // we previously did out-of-band if an extension was registered.
- // This is not necessary, as the natural kind is sufficient for ordering.
-
- switch rtkey.Kind() {
- case reflect.Bool:
- mksv := make([]boolRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Bool()
- }
- sort.Sort(boolRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeBool(mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.String:
- mksv := make([]stringRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.String()
- }
- sort.Sort(stringRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeStringEnc(cUTF8, mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
- mksv := make([]uintRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Uint()
- }
- sort.Sort(uintRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeUint(mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
- mksv := make([]intRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Int()
- }
- sort.Sort(intRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeInt(mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.Float32:
- mksv := make([]floatRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Float()
- }
- sort.Sort(floatRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeFloat32(float32(mksv[i].v))
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.Float64:
- mksv := make([]floatRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = k.Float()
- }
- sort.Sort(floatRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeFloat64(mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- case reflect.Struct:
- if rv.Type() == timeTyp {
- mksv := make([]timeRv, len(mks))
- for i, k := range mks {
- v := &mksv[i]
- v.r = k
- v.v = rv2i(k).(time.Time)
- }
- sort.Sort(timeRvSlice(mksv))
- for i := range mksv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- ee.EncodeTime(mksv[i].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
- }
- break
- }
- fallthrough
- default:
- // out-of-band
- // first encode each key to a []byte first, then sort them, then record
- var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
- e2 := NewEncoderBytes(&mksv, e.hh)
- mksbv := make([]bytesRv, len(mks))
- for i, k := range mks {
- v := &mksbv[i]
- l := len(mksv)
- e2.MustEncode(k)
- v.r = k
- v.v = mksv[l:]
- }
- sort.Sort(bytesRvSlice(mksbv))
- for j := range mksbv {
- if elemsep {
- ee.WriteMapElemKey()
- }
- e.asis(mksbv[j].v)
- if elemsep {
- ee.WriteMapElemValue()
- }
- e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
- }
- }
- }
-
- // // --------------------------------------------------
-
- type encWriterSwitch struct {
- // wi *ioEncWriter
- wb bytesEncAppender
- wf *bufioEncWriter
- // typ entryType
- bytes bool // encoding to []byte
- esep bool // whether it has elem separators
- isas bool // whether e.as != nil
- js bool // is json encoder?
- be bool // is binary encoder?
- _ [2]byte // padding
- // _ [2]uint64 // padding
- // _ uint64 // padding
- }
-
- func (z *encWriterSwitch) writeb(s []byte) {
- if z.bytes {
- z.wb.writeb(s)
- } else {
- z.wf.writeb(s)
- }
- }
- func (z *encWriterSwitch) writestr(s string) {
- if z.bytes {
- z.wb.writestr(s)
- } else {
- z.wf.writestr(s)
- }
- }
- func (z *encWriterSwitch) writen1(b1 byte) {
- if z.bytes {
- z.wb.writen1(b1)
- } else {
- z.wf.writen1(b1)
- }
- }
- func (z *encWriterSwitch) writen2(b1, b2 byte) {
- if z.bytes {
- z.wb.writen2(b1, b2)
- } else {
- z.wf.writen2(b1, b2)
- }
- }
- func (z *encWriterSwitch) end() {
- if z.bytes {
- z.wb.end()
- } else {
- z.wf.end()
- }
- }
-
- /*
-
- // ------------------------------------------
- func (z *encWriterSwitch) writeb(s []byte) {
- switch z.typ {
- case entryTypeBytes:
- z.wb.writeb(s)
- case entryTypeIo:
- z.wi.writeb(s)
- default:
- z.wf.writeb(s)
- }
- }
- func (z *encWriterSwitch) writestr(s string) {
- switch z.typ {
- case entryTypeBytes:
- z.wb.writestr(s)
- case entryTypeIo:
- z.wi.writestr(s)
- default:
- z.wf.writestr(s)
- }
- }
- func (z *encWriterSwitch) writen1(b1 byte) {
- switch z.typ {
- case entryTypeBytes:
- z.wb.writen1(b1)
- case entryTypeIo:
- z.wi.writen1(b1)
- default:
- z.wf.writen1(b1)
- }
- }
- func (z *encWriterSwitch) writen2(b1, b2 byte) {
- switch z.typ {
- case entryTypeBytes:
- z.wb.writen2(b1, b2)
- case entryTypeIo:
- z.wi.writen2(b1, b2)
- default:
- z.wf.writen2(b1, b2)
- }
- }
- func (z *encWriterSwitch) end() {
- switch z.typ {
- case entryTypeBytes:
- z.wb.end()
- case entryTypeIo:
- z.wi.end()
- default:
- z.wf.end()
- }
- }
-
- // ------------------------------------------
- func (z *encWriterSwitch) writeb(s []byte) {
- if z.bytes {
- z.wb.writeb(s)
- } else {
- z.wi.writeb(s)
- }
- }
- func (z *encWriterSwitch) writestr(s string) {
- if z.bytes {
- z.wb.writestr(s)
- } else {
- z.wi.writestr(s)
- }
- }
- func (z *encWriterSwitch) writen1(b1 byte) {
- if z.bytes {
- z.wb.writen1(b1)
- } else {
- z.wi.writen1(b1)
- }
- }
- func (z *encWriterSwitch) writen2(b1, b2 byte) {
- if z.bytes {
- z.wb.writen2(b1, b2)
- } else {
- z.wi.writen2(b1, b2)
- }
- }
- func (z *encWriterSwitch) end() {
- if z.bytes {
- z.wb.end()
- } else {
- z.wi.end()
- }
- }
-
- */
-
- // Encoder writes an object to an output stream in a supported format.
- //
- // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
- // concurrently in multiple goroutines.
- //
- // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
- // so its state can be reused to decode new input streams repeatedly.
- // This is the idiomatic way to use.
- type Encoder struct {
- panicHdl
- // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
- e encDriver
-
- // NOTE: Encoder shouldn't call it's write methods,
- // as the handler MAY need to do some coordination.
- w *encWriterSwitch
-
- // bw *bufio.Writer
- as encDriverAsis
-
- err error
-
- h *BasicHandle
- hh Handle
- // ---- cpu cache line boundary? + 3
- encWriterSwitch
-
- ci set
-
- b [(5 * 8)]byte // for encoding chan or (non-addressable) [N]byte
-
- // ---- writable fields during execution --- *try* to keep in sep cache line
-
- // ---- cpu cache line boundary?
- // b [scratchByteArrayLen]byte
- // _ [cacheLineSize - scratchByteArrayLen]byte // padding
- // b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
- }
-
- // NewEncoder returns an Encoder for encoding into an io.Writer.
- //
- // For efficiency, Users are encouraged to configure WriterBufferSize on the handle
- // OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
- func NewEncoder(w io.Writer, h Handle) *Encoder {
- e := newEncoder(h)
- e.Reset(w)
- return e
- }
-
- // NewEncoderBytes returns an encoder for encoding directly and efficiently
- // into a byte slice, using zero-copying to temporary slices.
- //
- // It will potentially replace the output byte slice pointed to.
- // After encoding, the out parameter contains the encoded contents.
- func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
- e := newEncoder(h)
- e.ResetBytes(out)
- return e
- }
-
- func newEncoder(h Handle) *Encoder {
- e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
- e.bytes = true
- if useFinalizers {
- runtime.SetFinalizer(e, (*Encoder).finalize)
- // xdebugf(">>>> new(Encoder) with finalizer")
- }
- e.w = &e.encWriterSwitch
- e.hh = h
- e.esep = h.hasElemSeparators()
-
- return e
- }
-
- func (e *Encoder) resetCommon() {
- // e.w = &e.encWriterSwitch
- if e.e == nil || e.hh.recreateEncDriver(e.e) {
- e.e = e.hh.newEncDriver(e)
- e.as, e.isas = e.e.(encDriverAsis)
- // e.cr, _ = e.e.(containerStateRecv)
- }
- e.be = e.hh.isBinary()
- _, e.js = e.hh.(*JsonHandle)
- e.e.reset()
- e.err = nil
- }
-
- // Reset resets the Encoder with a new output stream.
- //
- // This accommodates using the state of the Encoder,
- // where it has "cached" information about sub-engines.
- func (e *Encoder) Reset(w io.Writer) {
- if w == nil {
- return
- }
- // var ok bool
- e.bytes = false
- if e.wf == nil {
- e.wf = new(bufioEncWriter)
- }
- // e.typ = entryTypeUnset
- // if e.h.WriterBufferSize > 0 {
- // // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
- // // e.wi.bw = bw
- // // e.wi.sw = bw
- // // e.wi.fw = bw
- // // e.wi.ww = bw
- // if e.wf == nil {
- // e.wf = new(bufioEncWriter)
- // }
- // e.wf.reset(w, e.h.WriterBufferSize)
- // e.typ = entryTypeBufio
- // } else {
- // if e.wi == nil {
- // e.wi = new(ioEncWriter)
- // }
- // e.wi.reset(w)
- // e.typ = entryTypeIo
- // }
- e.wf.reset(w, e.h.WriterBufferSize)
- // e.typ = entryTypeBufio
-
- // e.w = e.wi
- e.resetCommon()
- }
-
- // ResetBytes resets the Encoder with a new destination output []byte.
- func (e *Encoder) ResetBytes(out *[]byte) {
- if out == nil {
- return
- }
- var in []byte = *out
- if in == nil {
- in = make([]byte, defEncByteBufSize)
- }
- e.bytes = true
- // e.typ = entryTypeBytes
- e.wb.reset(in, out)
- // e.w = &e.wb
- e.resetCommon()
- }
-
- // Encode writes an object into a stream.
- //
- // Encoding can be configured via the struct tag for the fields.
- // The key (in the struct tags) that we look at is configurable.
- //
- // By default, we look up the "codec" key in the struct field's tags,
- // and fall bak to the "json" key if "codec" is absent.
- // That key in struct field's tag value is the key name,
- // followed by an optional comma and options.
- //
- // To set an option on all fields (e.g. omitempty on all fields), you
- // can create a field called _struct, and set flags on it. The options
- // which can be set on _struct are:
- // - omitempty: so all fields are omitted if empty
- // - toarray: so struct is encoded as an array
- // - int: so struct key names are encoded as signed integers (instead of strings)
- // - uint: so struct key names are encoded as unsigned integers (instead of strings)
- // - float: so struct key names are encoded as floats (instead of strings)
- // More details on these below.
- //
- // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
- // - the field's tag is "-", OR
- // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
- //
- // When encoding as a map, the first string in the tag (before the comma)
- // is the map key string to use when encoding.
- // ...
- // This key is typically encoded as a string.
- // However, there are instances where the encoded stream has mapping keys encoded as numbers.
- // For example, some cbor streams have keys as integer codes in the stream, but they should map
- // to fields in a structured object. Consequently, a struct is the natural representation in code.
- // For these, configure the struct to encode/decode the keys as numbers (instead of string).
- // This is done with the int,uint or float option on the _struct field (see above).
- //
- // However, struct values may encode as arrays. This happens when:
- // - StructToArray Encode option is set, OR
- // - the tag on the _struct field sets the "toarray" option
- // Note that omitempty is ignored when encoding struct values as arrays,
- // as an entry must be encoded for each field, to maintain its position.
- //
- // Values with types that implement MapBySlice are encoded as stream maps.
- //
- // The empty values (for omitempty option) are false, 0, any nil pointer
- // or interface value, and any array, slice, map, or string of length zero.
- //
- // Anonymous fields are encoded inline except:
- // - the struct tag specifies a replacement name (first value)
- // - the field is of an interface type
- //
- // Examples:
- //
- // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
- // type MyStruct struct {
- // _struct bool `codec:",omitempty"` //set omitempty for every field
- // Field1 string `codec:"-"` //skip this field
- // Field2 int `codec:"myName"` //Use key "myName" in encode stream
- // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
- // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
- // io.Reader //use key "Reader".
- // MyStruct `codec:"my1" //use key "my1".
- // MyStruct //inline it
- // ...
- // }
- //
- // type MyStruct struct {
- // _struct bool `codec:",toarray"` //encode struct as an array
- // }
- //
- // type MyStruct struct {
- // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
- // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
- // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
- // }
- //
- // The mode of encoding is based on the type of the value. When a value is seen:
- // - If a Selfer, call its CodecEncodeSelf method
- // - If an extension is registered for it, call that extension function
- // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
- // - Else encode it based on its reflect.Kind
- //
- // Note that struct field names and keys in map[string]XXX will be treated as symbols.
- // Some formats support symbols (e.g. binc) and will properly encode the string
- // only once in the stream, and use a tag to refer to it thereafter.
- func (e *Encoder) Encode(v interface{}) (err error) {
- // tried to use closure, as runtime optimizes defer with no params.
- // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
- // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
- // defer func() { e.deferred(&err) }() }
- // { x, y := e, &err; defer func() { x.deferred(y) }() }
- if e.err != nil {
- return e.err
- }
- if recoverPanicToErr {
- defer func() {
- e.w.end()
- if x := recover(); x != nil {
- panicValToErr(e, x, &e.err)
- err = e.err
- }
- }()
- }
-
- // defer e.deferred(&err)
- e.mustEncode(v)
- return
- }
-
- // MustEncode is like Encode, but panics if unable to Encode.
- // This provides insight to the code location that triggered the error.
- func (e *Encoder) MustEncode(v interface{}) {
- if e.err != nil {
- panic(e.err)
- }
- e.mustEncode(v)
- }
-
- func (e *Encoder) mustEncode(v interface{}) {
- if e.wf == nil {
- e.encode(v)
- e.e.atEndOfEncode()
- e.w.end()
- return
- }
-
- if e.wf.buf == nil {
- e.wf.buf = e.wf.bytesBufPooler.get(e.wf.sz)
- }
- e.wf.calls++
-
- e.encode(v)
- e.e.atEndOfEncode()
- e.w.end()
-
- e.wf.calls--
-
- if !e.h.ExplicitRelease && e.wf.calls == 0 {
- e.wf.release()
- }
- }
-
- // func (e *Encoder) deferred(err1 *error) {
- // e.w.end()
- // if recoverPanicToErr {
- // if x := recover(); x != nil {
- // panicValToErr(e, x, err1)
- // panicValToErr(e, x, &e.err)
- // }
- // }
- // }
-
- //go:noinline -- as it is run by finalizer
- func (e *Encoder) finalize() {
- // xdebugf("finalizing Encoder")
- e.Release()
- }
-
- // Release releases shared (pooled) resources.
- //
- // It is important to call Release() when done with an Encoder, so those resources
- // are released instantly for use by subsequently created Encoders.
- func (e *Encoder) Release() {
- if e.wf != nil {
- e.wf.release()
- }
- }
-
- func (e *Encoder) encode(iv interface{}) {
- // a switch with only concrete types can be optimized.
- // consequently, we deal with nil and interfaces outside the switch.
-
- if iv == nil || definitelyNil(iv) {
- e.e.EncodeNil()
- return
- }
-
- switch v := iv.(type) {
- // case nil:
- // case Selfer:
- case Raw:
- e.rawBytes(v)
- case reflect.Value:
- e.encodeValue(v, nil, true)
-
- case string:
- e.e.EncodeStringEnc(cUTF8, v)
- case bool:
- e.e.EncodeBool(v)
- case int:
- e.e.EncodeInt(int64(v))
- case int8:
- e.e.EncodeInt(int64(v))
- case int16:
- e.e.EncodeInt(int64(v))
- case int32:
- e.e.EncodeInt(int64(v))
- case int64:
- e.e.EncodeInt(v)
- case uint:
- e.e.EncodeUint(uint64(v))
- case uint8:
- e.e.EncodeUint(uint64(v))
- case uint16:
- e.e.EncodeUint(uint64(v))
- case uint32:
- e.e.EncodeUint(uint64(v))
- case uint64:
- e.e.EncodeUint(v)
- case uintptr:
- e.e.EncodeUint(uint64(v))
- case float32:
- e.e.EncodeFloat32(v)
- case float64:
- e.e.EncodeFloat64(v)
- case time.Time:
- e.e.EncodeTime(v)
- case []uint8:
- e.e.EncodeStringBytesRaw(v)
-
- case *Raw:
- e.rawBytes(*v)
-
- case *string:
- e.e.EncodeStringEnc(cUTF8, *v)
- case *bool:
- e.e.EncodeBool(*v)
- case *int:
- e.e.EncodeInt(int64(*v))
- case *int8:
- e.e.EncodeInt(int64(*v))
- case *int16:
- e.e.EncodeInt(int64(*v))
- case *int32:
- e.e.EncodeInt(int64(*v))
- case *int64:
- e.e.EncodeInt(*v)
- case *uint:
- e.e.EncodeUint(uint64(*v))
- case *uint8:
- e.e.EncodeUint(uint64(*v))
- case *uint16:
- e.e.EncodeUint(uint64(*v))
- case *uint32:
- e.e.EncodeUint(uint64(*v))
- case *uint64:
- e.e.EncodeUint(*v)
- case *uintptr:
- e.e.EncodeUint(uint64(*v))
- case *float32:
- e.e.EncodeFloat32(*v)
- case *float64:
- e.e.EncodeFloat64(*v)
- case *time.Time:
- e.e.EncodeTime(*v)
-
- case *[]uint8:
- e.e.EncodeStringBytesRaw(*v)
-
- default:
- if v, ok := iv.(Selfer); ok {
- v.CodecEncodeSelf(e)
- } else if !fastpathEncodeTypeSwitch(iv, e) {
- // checkfastpath=true (not false), as underlying slice/map type may be fast-path
- e.encodeValue(reflect.ValueOf(iv), nil, true)
- }
- }
- }
-
- func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
- // if a valid fn is passed, it MUST BE for the dereferenced type of rv
- var sptr uintptr
- var rvp reflect.Value
- var rvpValid bool
- TOP:
- switch rv.Kind() {
- case reflect.Ptr:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- rvpValid = true
- rvp = rv
- rv = rv.Elem()
- if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
- // TODO: Movable pointers will be an issue here. Future problem.
- sptr = rv.UnsafeAddr()
- break TOP
- }
- goto TOP
- case reflect.Interface:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- rv = rv.Elem()
- goto TOP
- case reflect.Slice, reflect.Map:
- if rv.IsNil() {
- e.e.EncodeNil()
- return
- }
- case reflect.Invalid, reflect.Func:
- e.e.EncodeNil()
- return
- }
-
- if sptr != 0 && (&e.ci).add(sptr) {
- e.errorf("circular reference found: # %d", sptr)
- }
-
- if fn == nil {
- rt := rv.Type()
- // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
- fn = e.h.fn(rt, checkFastpath, true)
- }
- if fn.i.addrE {
- if rvpValid {
- fn.fe(e, &fn.i, rvp)
- } else if rv.CanAddr() {
- fn.fe(e, &fn.i, rv.Addr())
- } else {
- rv2 := reflect.New(rv.Type())
- rv2.Elem().Set(rv)
- fn.fe(e, &fn.i, rv2)
- }
- } else {
- fn.fe(e, &fn.i, rv)
- }
- if sptr != 0 {
- (&e.ci).remove(sptr)
- }
- }
-
- // func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
- // if fnerr != nil {
- // panic(fnerr)
- // }
- // if bs == nil {
- // e.e.EncodeNil()
- // } else if asis {
- // e.asis(bs)
- // } else {
- // e.e.EncodeStringBytes(c, bs)
- // }
- // }
-
- func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
- if fnerr != nil {
- panic(fnerr)
- }
- if bs == nil {
- e.e.EncodeNil()
- } else {
- e.e.EncodeStringEnc(cUTF8, stringView(bs))
- }
- }
-
- func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
- if fnerr != nil {
- panic(fnerr)
- }
- if bs == nil {
- e.e.EncodeNil()
- } else {
- e.asis(bs)
- }
- }
-
- func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
- if fnerr != nil {
- panic(fnerr)
- }
- if bs == nil {
- e.e.EncodeNil()
- } else {
- e.e.EncodeStringBytesRaw(bs)
- }
- }
-
- func (e *Encoder) asis(v []byte) {
- if e.isas {
- e.as.EncodeAsis(v)
- } else {
- e.w.writeb(v)
- }
- }
-
- func (e *Encoder) rawBytes(vv Raw) {
- v := []byte(vv)
- if !e.h.Raw {
- e.errorf("Raw values cannot be encoded: %v", v)
- }
- e.asis(v)
- }
-
- func (e *Encoder) wrapErr(v interface{}, err *error) {
- *err = encodeError{codecError{name: e.hh.Name(), err: v}}
- }
|