http urls monitor.

encode.go 37KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. // Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "bufio"
  6. "encoding"
  7. "errors"
  8. "fmt"
  9. "io"
  10. "reflect"
  11. "sort"
  12. "strconv"
  13. "sync"
  14. "time"
  15. )
  16. const defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  17. var errEncoderNotInitialized = errors.New("Encoder not initialized")
  18. // encWriter abstracts writing to a byte array or to an io.Writer.
  19. type encWriter interface {
  20. writeb([]byte)
  21. writestr(string)
  22. writen1(byte)
  23. writen2(byte, byte)
  24. atEndOfEncode()
  25. }
  26. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  27. type encDriver interface {
  28. EncodeNil()
  29. EncodeInt(i int64)
  30. EncodeUint(i uint64)
  31. EncodeBool(b bool)
  32. EncodeFloat32(f float32)
  33. EncodeFloat64(f float64)
  34. // encodeExtPreamble(xtag byte, length int)
  35. EncodeRawExt(re *RawExt, e *Encoder)
  36. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  37. EncodeString(c charEncoding, v string)
  38. // EncodeSymbol(v string)
  39. EncodeStringBytes(c charEncoding, v []byte)
  40. EncodeTime(time.Time)
  41. //encBignum(f *big.Int)
  42. //encStringRunes(c charEncoding, v []rune)
  43. WriteArrayStart(length int)
  44. WriteArrayElem()
  45. WriteArrayEnd()
  46. WriteMapStart(length int)
  47. WriteMapElemKey()
  48. WriteMapElemValue()
  49. WriteMapEnd()
  50. reset()
  51. atEndOfEncode()
  52. }
  53. type ioEncStringWriter interface {
  54. WriteString(s string) (n int, err error)
  55. }
  56. type encDriverAsis interface {
  57. EncodeAsis(v []byte)
  58. }
  59. type encodeError struct {
  60. codecError
  61. }
  62. func (e encodeError) Error() string {
  63. return fmt.Sprintf("%s encode error: %v", e.name, e.err)
  64. }
  65. type encDriverNoopContainerWriter struct{}
  66. func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
  67. func (encDriverNoopContainerWriter) WriteArrayElem() {}
  68. func (encDriverNoopContainerWriter) WriteArrayEnd() {}
  69. func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
  70. func (encDriverNoopContainerWriter) WriteMapElemKey() {}
  71. func (encDriverNoopContainerWriter) WriteMapElemValue() {}
  72. func (encDriverNoopContainerWriter) WriteMapEnd() {}
  73. func (encDriverNoopContainerWriter) atEndOfEncode() {}
  74. type encDriverTrackContainerWriter struct {
  75. c containerState
  76. }
  77. func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
  78. func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
  79. func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
  80. func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
  81. func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
  82. func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
  83. func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
  84. func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
  85. // type ioEncWriterWriter interface {
  86. // WriteByte(c byte) error
  87. // WriteString(s string) (n int, err error)
  88. // Write(p []byte) (n int, err error)
  89. // }
  90. // EncodeOptions captures configuration options during encode.
  91. type EncodeOptions struct {
  92. // WriterBufferSize is the size of the buffer used when writing.
  93. //
  94. // if > 0, we use a smart buffer internally for performance purposes.
  95. WriterBufferSize int
  96. // ChanRecvTimeout is the timeout used when selecting from a chan.
  97. //
  98. // Configuring this controls how we receive from a chan during the encoding process.
  99. // - If ==0, we only consume the elements currently available in the chan.
  100. // - if <0, we consume until the chan is closed.
  101. // - If >0, we consume until this timeout.
  102. ChanRecvTimeout time.Duration
  103. // StructToArray specifies to encode a struct as an array, and not as a map
  104. StructToArray bool
  105. // Canonical representation means that encoding a value will always result in the same
  106. // sequence of bytes.
  107. //
  108. // This only affects maps, as the iteration order for maps is random.
  109. //
  110. // The implementation MAY use the natural sort order for the map keys if possible:
  111. //
  112. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  113. // then the map keys are first sorted in natural order and then written
  114. // with corresponding map values to the strema.
  115. // - If there is no natural sort order, then the map keys will first be
  116. // encoded into []byte, and then sorted,
  117. // before writing the sorted keys and the corresponding map values to the stream.
  118. //
  119. Canonical bool
  120. // CheckCircularRef controls whether we check for circular references
  121. // and error fast during an encode.
  122. //
  123. // If enabled, an error is received if a pointer to a struct
  124. // references itself either directly or through one of its fields (iteratively).
  125. //
  126. // This is opt-in, as there may be a performance hit to checking circular references.
  127. CheckCircularRef bool
  128. // RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
  129. // when checking if a value is empty.
  130. //
  131. // Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
  132. RecursiveEmptyCheck bool
  133. // Raw controls whether we encode Raw values.
  134. // This is a "dangerous" option and must be explicitly set.
  135. // If set, we blindly encode Raw values as-is, without checking
  136. // if they are a correct representation of a value in that format.
  137. // If unset, we error out.
  138. Raw bool
  139. // // AsSymbols defines what should be encoded as symbols.
  140. // //
  141. // // Encoding as symbols can reduce the encoded size significantly.
  142. // //
  143. // // However, during decoding, each string to be encoded as a symbol must
  144. // // be checked to see if it has been seen before. Consequently, encoding time
  145. // // will increase if using symbols, because string comparisons has a clear cost.
  146. // //
  147. // // Sample values:
  148. // // AsSymbolNone
  149. // // AsSymbolAll
  150. // // AsSymbolMapStringKeys
  151. // // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  152. // AsSymbols AsSymbolFlag
  153. }
  154. // ---------------------------------------------
  155. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  156. type ioEncWriter struct {
  157. w io.Writer
  158. ww io.Writer
  159. bw io.ByteWriter
  160. sw ioEncStringWriter
  161. fw ioFlusher
  162. b [8]byte
  163. }
  164. func (z *ioEncWriter) WriteByte(b byte) (err error) {
  165. z.b[0] = b
  166. _, err = z.w.Write(z.b[:1])
  167. return
  168. }
  169. func (z *ioEncWriter) WriteString(s string) (n int, err error) {
  170. return z.w.Write(bytesView(s))
  171. }
  172. func (z *ioEncWriter) writeb(bs []byte) {
  173. if _, err := z.ww.Write(bs); err != nil {
  174. panic(err)
  175. }
  176. }
  177. func (z *ioEncWriter) writestr(s string) {
  178. if _, err := z.sw.WriteString(s); err != nil {
  179. panic(err)
  180. }
  181. }
  182. func (z *ioEncWriter) writen1(b byte) {
  183. if err := z.bw.WriteByte(b); err != nil {
  184. panic(err)
  185. }
  186. }
  187. func (z *ioEncWriter) writen2(b1, b2 byte) {
  188. var err error
  189. if err = z.bw.WriteByte(b1); err == nil {
  190. if err = z.bw.WriteByte(b2); err == nil {
  191. return
  192. }
  193. }
  194. panic(err)
  195. }
  196. // func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
  197. // z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
  198. // if _, err := z.ww.Write(z.b[:5]); err != nil {
  199. // panic(err)
  200. // }
  201. // }
  202. func (z *ioEncWriter) atEndOfEncode() {
  203. if z.fw != nil {
  204. if err := z.fw.Flush(); err != nil {
  205. panic(err)
  206. }
  207. }
  208. }
  209. // ---------------------------------------------
  210. // bytesEncAppender implements encWriter and can write to an byte slice.
  211. type bytesEncAppender struct {
  212. b []byte
  213. out *[]byte
  214. }
  215. func (z *bytesEncAppender) writeb(s []byte) {
  216. z.b = append(z.b, s...)
  217. }
  218. func (z *bytesEncAppender) writestr(s string) {
  219. z.b = append(z.b, s...)
  220. }
  221. func (z *bytesEncAppender) writen1(b1 byte) {
  222. z.b = append(z.b, b1)
  223. }
  224. func (z *bytesEncAppender) writen2(b1, b2 byte) {
  225. z.b = append(z.b, b1, b2)
  226. }
  227. func (z *bytesEncAppender) atEndOfEncode() {
  228. *(z.out) = z.b
  229. }
  230. func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
  231. z.b = in[:0]
  232. z.out = out
  233. }
  234. // ---------------------------------------------
  235. func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
  236. e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
  237. }
  238. func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
  239. e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
  240. }
  241. func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
  242. rv2i(rv).(Selfer).CodecEncodeSelf(e)
  243. }
  244. func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
  245. bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
  246. e.marshal(bs, fnerr, false, cRAW)
  247. }
  248. func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
  249. bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
  250. e.marshal(bs, fnerr, false, cUTF8)
  251. }
  252. func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
  253. bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
  254. e.marshal(bs, fnerr, true, cUTF8)
  255. }
  256. func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
  257. e.rawBytes(rv2i(rv).(Raw))
  258. }
  259. func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
  260. e.e.EncodeNil()
  261. }
  262. func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
  263. e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  264. }
  265. func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
  266. ti := f.ti
  267. ee := e.e
  268. // array may be non-addressable, so we have to manage with care
  269. // (don't call rv.Bytes, rv.Slice, etc).
  270. // E.g. type struct S{B [2]byte};
  271. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  272. if f.seq != seqTypeArray {
  273. if rv.IsNil() {
  274. ee.EncodeNil()
  275. return
  276. }
  277. // If in this method, then there was no extension function defined.
  278. // So it's okay to treat as []byte.
  279. if ti.rtid == uint8SliceTypId {
  280. ee.EncodeStringBytes(cRAW, rv.Bytes())
  281. return
  282. }
  283. }
  284. if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
  285. e.errorf("send-only channel cannot be encoded")
  286. }
  287. elemsep := e.esep
  288. rtelem := ti.elem
  289. rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
  290. var l int
  291. // if a slice, array or chan of bytes, treat specially
  292. if rtelemIsByte {
  293. switch f.seq {
  294. case seqTypeSlice:
  295. ee.EncodeStringBytes(cRAW, rv.Bytes())
  296. case seqTypeArray:
  297. l = rv.Len()
  298. if rv.CanAddr() {
  299. ee.EncodeStringBytes(cRAW, rv.Slice(0, l).Bytes())
  300. } else {
  301. var bs []byte
  302. if l <= cap(e.b) {
  303. bs = e.b[:l]
  304. } else {
  305. bs = make([]byte, l)
  306. }
  307. reflect.Copy(reflect.ValueOf(bs), rv)
  308. ee.EncodeStringBytes(cRAW, bs)
  309. }
  310. case seqTypeChan:
  311. // do not use range, so that the number of elements encoded
  312. // does not change, and encoding does not hang waiting on someone to close chan.
  313. // for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
  314. // ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
  315. if rv.IsNil() {
  316. ee.EncodeNil()
  317. break
  318. }
  319. bs := e.b[:0]
  320. irv := rv2i(rv)
  321. ch, ok := irv.(<-chan byte)
  322. if !ok {
  323. ch = irv.(chan byte)
  324. }
  325. L1:
  326. switch timeout := e.h.ChanRecvTimeout; {
  327. case timeout == 0: // only consume available
  328. for {
  329. select {
  330. case b := <-ch:
  331. bs = append(bs, b)
  332. default:
  333. break L1
  334. }
  335. }
  336. case timeout > 0: // consume until timeout
  337. tt := time.NewTimer(timeout)
  338. for {
  339. select {
  340. case b := <-ch:
  341. bs = append(bs, b)
  342. case <-tt.C:
  343. // close(tt.C)
  344. break L1
  345. }
  346. }
  347. default: // consume until close
  348. for b := range ch {
  349. bs = append(bs, b)
  350. }
  351. }
  352. ee.EncodeStringBytes(cRAW, bs)
  353. }
  354. return
  355. }
  356. // if chan, consume chan into a slice, and work off that slice.
  357. var rvcs reflect.Value
  358. if f.seq == seqTypeChan {
  359. rvcs = reflect.Zero(reflect.SliceOf(rtelem))
  360. timeout := e.h.ChanRecvTimeout
  361. if timeout < 0 { // consume until close
  362. for {
  363. recv, recvOk := rv.Recv()
  364. if !recvOk {
  365. break
  366. }
  367. rvcs = reflect.Append(rvcs, recv)
  368. }
  369. } else {
  370. cases := make([]reflect.SelectCase, 2)
  371. cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
  372. if timeout == 0 {
  373. cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
  374. } else {
  375. tt := time.NewTimer(timeout)
  376. cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
  377. }
  378. for {
  379. chosen, recv, recvOk := reflect.Select(cases)
  380. if chosen == 1 || !recvOk {
  381. break
  382. }
  383. rvcs = reflect.Append(rvcs, recv)
  384. }
  385. }
  386. rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
  387. }
  388. l = rv.Len()
  389. if ti.mbs {
  390. if l%2 == 1 {
  391. e.errorf("mapBySlice requires even slice length, but got %v", l)
  392. return
  393. }
  394. ee.WriteMapStart(l / 2)
  395. } else {
  396. ee.WriteArrayStart(l)
  397. }
  398. if l > 0 {
  399. var fn *codecFn
  400. for rtelem.Kind() == reflect.Ptr {
  401. rtelem = rtelem.Elem()
  402. }
  403. // if kind is reflect.Interface, do not pre-determine the
  404. // encoding type, because preEncodeValue may break it down to
  405. // a concrete type and kInterface will bomb.
  406. if rtelem.Kind() != reflect.Interface {
  407. fn = e.cfer().get(rtelem, true, true)
  408. }
  409. for j := 0; j < l; j++ {
  410. if elemsep {
  411. if ti.mbs {
  412. if j%2 == 0 {
  413. ee.WriteMapElemKey()
  414. } else {
  415. ee.WriteMapElemValue()
  416. }
  417. } else {
  418. ee.WriteArrayElem()
  419. }
  420. }
  421. e.encodeValue(rv.Index(j), fn, true)
  422. }
  423. }
  424. if ti.mbs {
  425. ee.WriteMapEnd()
  426. } else {
  427. ee.WriteArrayEnd()
  428. }
  429. }
  430. func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
  431. fti := f.ti
  432. elemsep := e.esep
  433. tisfi := fti.sfiSrc
  434. toMap := !(fti.toArray || e.h.StructToArray)
  435. if toMap {
  436. tisfi = fti.sfiSort
  437. }
  438. ee := e.e
  439. sfn := structFieldNode{v: rv, update: false}
  440. if toMap {
  441. ee.WriteMapStart(len(tisfi))
  442. if elemsep {
  443. for _, si := range tisfi {
  444. ee.WriteMapElemKey()
  445. // ee.EncodeString(cUTF8, si.encName)
  446. e.kStructFieldKey(fti.keyType, si)
  447. ee.WriteMapElemValue()
  448. e.encodeValue(sfn.field(si), nil, true)
  449. }
  450. } else {
  451. for _, si := range tisfi {
  452. // ee.EncodeString(cUTF8, si.encName)
  453. e.kStructFieldKey(fti.keyType, si)
  454. e.encodeValue(sfn.field(si), nil, true)
  455. }
  456. }
  457. ee.WriteMapEnd()
  458. } else {
  459. ee.WriteArrayStart(len(tisfi))
  460. if elemsep {
  461. for _, si := range tisfi {
  462. ee.WriteArrayElem()
  463. e.encodeValue(sfn.field(si), nil, true)
  464. }
  465. } else {
  466. for _, si := range tisfi {
  467. e.encodeValue(sfn.field(si), nil, true)
  468. }
  469. }
  470. ee.WriteArrayEnd()
  471. }
  472. }
  473. func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
  474. var m must
  475. // use if-else-if, not switch (which compiles to binary-search)
  476. // since keyType is typically valueTypeString, branch prediction is pretty good.
  477. if keyType == valueTypeString {
  478. if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
  479. e.w.writen1('"')
  480. e.w.writestr(s.encName)
  481. e.w.writen1('"')
  482. } else { // keyType == valueTypeString
  483. e.e.EncodeString(cUTF8, s.encName)
  484. }
  485. } else if keyType == valueTypeInt {
  486. e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
  487. } else if keyType == valueTypeUint {
  488. e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
  489. } else if keyType == valueTypeFloat {
  490. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
  491. }
  492. }
  493. func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
  494. var m must
  495. // use if-else-if, not switch (which compiles to binary-search)
  496. // since keyType is typically valueTypeString, branch prediction is pretty good.
  497. if keyType == valueTypeString {
  498. e.e.EncodeString(cUTF8, encName)
  499. } else if keyType == valueTypeInt {
  500. e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
  501. } else if keyType == valueTypeUint {
  502. e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
  503. } else if keyType == valueTypeFloat {
  504. e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
  505. }
  506. }
  507. func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
  508. fti := f.ti
  509. elemsep := e.esep
  510. tisfi := fti.sfiSrc
  511. var newlen int
  512. toMap := !(fti.toArray || e.h.StructToArray)
  513. var mf []MissingFieldPair
  514. if f.ti.mf {
  515. mf = rv2i(rv).(MissingFielder).CodecMissingFields()
  516. toMap = true
  517. newlen += len(mf)
  518. } else if f.ti.mfp {
  519. if rv.CanAddr() {
  520. mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
  521. } else {
  522. // make a new addressable value of same one, and use it
  523. rv2 := reflect.New(rv.Type())
  524. rv2.Elem().Set(rv)
  525. mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
  526. }
  527. toMap = true
  528. newlen += len(mf)
  529. }
  530. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  531. if toMap {
  532. tisfi = fti.sfiSort
  533. }
  534. newlen += len(tisfi)
  535. ee := e.e
  536. // Use sync.Pool to reduce allocating slices unnecessarily.
  537. // The cost of sync.Pool is less than the cost of new allocation.
  538. //
  539. // Each element of the array pools one of encStructPool(8|16|32|64).
  540. // It allows the re-use of slices up to 64 in length.
  541. // A performance cost of encoding structs was collecting
  542. // which values were empty and should be omitted.
  543. // We needed slices of reflect.Value and string to collect them.
  544. // This shared pool reduces the amount of unnecessary creation we do.
  545. // The cost is that of locking sometimes, but sync.Pool is efficient
  546. // enough to reduce thread contention.
  547. var spool *sync.Pool
  548. var poolv interface{}
  549. var fkvs []sfiRv
  550. // fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
  551. if newlen <= 8 {
  552. spool, poolv = pool.sfiRv8()
  553. fkvs = poolv.(*[8]sfiRv)[:newlen]
  554. } else if newlen <= 16 {
  555. spool, poolv = pool.sfiRv16()
  556. fkvs = poolv.(*[16]sfiRv)[:newlen]
  557. } else if newlen <= 32 {
  558. spool, poolv = pool.sfiRv32()
  559. fkvs = poolv.(*[32]sfiRv)[:newlen]
  560. } else if newlen <= 64 {
  561. spool, poolv = pool.sfiRv64()
  562. fkvs = poolv.(*[64]sfiRv)[:newlen]
  563. } else if newlen <= 128 {
  564. spool, poolv = pool.sfiRv128()
  565. fkvs = poolv.(*[128]sfiRv)[:newlen]
  566. } else {
  567. fkvs = make([]sfiRv, newlen)
  568. }
  569. newlen = 0
  570. var kv sfiRv
  571. recur := e.h.RecursiveEmptyCheck
  572. sfn := structFieldNode{v: rv, update: false}
  573. for _, si := range tisfi {
  574. // kv.r = si.field(rv, false)
  575. kv.r = sfn.field(si)
  576. if toMap {
  577. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  578. continue
  579. }
  580. kv.v = si // si.encName
  581. } else {
  582. // use the zero value.
  583. // if a reference or struct, set to nil (so you do not output too much)
  584. if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
  585. switch kv.r.Kind() {
  586. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
  587. kv.r = reflect.Value{} //encode as nil
  588. }
  589. }
  590. }
  591. fkvs[newlen] = kv
  592. newlen++
  593. }
  594. var mflen int
  595. for i := range mf {
  596. if mf[i].Field == "" {
  597. continue
  598. }
  599. if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(mf[i].Value), e.h.TypeInfos, recur, recur) {
  600. mf[i].Field = ""
  601. continue
  602. }
  603. mflen++
  604. }
  605. if toMap {
  606. ee.WriteMapStart(newlen + mflen)
  607. if elemsep {
  608. for j := 0; j < newlen; j++ {
  609. kv = fkvs[j]
  610. ee.WriteMapElemKey()
  611. // ee.EncodeString(cUTF8, kv.v)
  612. e.kStructFieldKey(fti.keyType, kv.v)
  613. ee.WriteMapElemValue()
  614. e.encodeValue(kv.r, nil, true)
  615. }
  616. } else {
  617. for j := 0; j < newlen; j++ {
  618. kv = fkvs[j]
  619. // ee.EncodeString(cUTF8, kv.v)
  620. e.kStructFieldKey(fti.keyType, kv.v)
  621. e.encodeValue(kv.r, nil, true)
  622. }
  623. }
  624. // now, add the others
  625. for i := range mf {
  626. if mf[i].Field == "" {
  627. continue
  628. }
  629. ee.WriteMapElemKey()
  630. e.kStructFieldKeyName(fti.keyType, mf[i].Field)
  631. ee.WriteMapElemValue()
  632. e.encode(mf[i].Value)
  633. }
  634. ee.WriteMapEnd()
  635. } else {
  636. ee.WriteArrayStart(newlen)
  637. if elemsep {
  638. for j := 0; j < newlen; j++ {
  639. ee.WriteArrayElem()
  640. e.encodeValue(fkvs[j].r, nil, true)
  641. }
  642. } else {
  643. for j := 0; j < newlen; j++ {
  644. e.encodeValue(fkvs[j].r, nil, true)
  645. }
  646. }
  647. ee.WriteArrayEnd()
  648. }
  649. // do not use defer. Instead, use explicit pool return at end of function.
  650. // defer has a cost we are trying to avoid.
  651. // If there is a panic and these slices are not returned, it is ok.
  652. if spool != nil {
  653. spool.Put(poolv)
  654. }
  655. }
  656. func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
  657. ee := e.e
  658. if rv.IsNil() {
  659. ee.EncodeNil()
  660. return
  661. }
  662. l := rv.Len()
  663. ee.WriteMapStart(l)
  664. elemsep := e.esep
  665. if l == 0 {
  666. ee.WriteMapEnd()
  667. return
  668. }
  669. // var asSymbols bool
  670. // determine the underlying key and val encFn's for the map.
  671. // This eliminates some work which is done for each loop iteration i.e.
  672. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  673. //
  674. // However, if kind is reflect.Interface, do not pre-determine the
  675. // encoding type, because preEncodeValue may break it down to
  676. // a concrete type and kInterface will bomb.
  677. var keyFn, valFn *codecFn
  678. ti := f.ti
  679. rtkey0 := ti.key
  680. rtkey := rtkey0
  681. rtval0 := ti.elem
  682. rtval := rtval0
  683. // rtkeyid := rt2id(rtkey0)
  684. for rtval.Kind() == reflect.Ptr {
  685. rtval = rtval.Elem()
  686. }
  687. if rtval.Kind() != reflect.Interface {
  688. valFn = e.cfer().get(rtval, true, true)
  689. }
  690. mks := rv.MapKeys()
  691. if e.h.Canonical {
  692. e.kMapCanonical(rtkey, rv, mks, valFn)
  693. ee.WriteMapEnd()
  694. return
  695. }
  696. var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
  697. if !keyTypeIsString {
  698. for rtkey.Kind() == reflect.Ptr {
  699. rtkey = rtkey.Elem()
  700. }
  701. if rtkey.Kind() != reflect.Interface {
  702. // rtkeyid = rt2id(rtkey)
  703. keyFn = e.cfer().get(rtkey, true, true)
  704. }
  705. }
  706. // for j, lmks := 0, len(mks); j < lmks; j++ {
  707. for j := range mks {
  708. if elemsep {
  709. ee.WriteMapElemKey()
  710. }
  711. if keyTypeIsString {
  712. ee.EncodeString(cUTF8, mks[j].String())
  713. } else {
  714. e.encodeValue(mks[j], keyFn, true)
  715. }
  716. if elemsep {
  717. ee.WriteMapElemValue()
  718. }
  719. e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
  720. }
  721. ee.WriteMapEnd()
  722. }
  723. func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
  724. ee := e.e
  725. elemsep := e.esep
  726. // we previously did out-of-band if an extension was registered.
  727. // This is not necessary, as the natural kind is sufficient for ordering.
  728. switch rtkey.Kind() {
  729. case reflect.Bool:
  730. mksv := make([]boolRv, len(mks))
  731. for i, k := range mks {
  732. v := &mksv[i]
  733. v.r = k
  734. v.v = k.Bool()
  735. }
  736. sort.Sort(boolRvSlice(mksv))
  737. for i := range mksv {
  738. if elemsep {
  739. ee.WriteMapElemKey()
  740. }
  741. ee.EncodeBool(mksv[i].v)
  742. if elemsep {
  743. ee.WriteMapElemValue()
  744. }
  745. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  746. }
  747. case reflect.String:
  748. mksv := make([]stringRv, len(mks))
  749. for i, k := range mks {
  750. v := &mksv[i]
  751. v.r = k
  752. v.v = k.String()
  753. }
  754. sort.Sort(stringRvSlice(mksv))
  755. for i := range mksv {
  756. if elemsep {
  757. ee.WriteMapElemKey()
  758. }
  759. ee.EncodeString(cUTF8, mksv[i].v)
  760. if elemsep {
  761. ee.WriteMapElemValue()
  762. }
  763. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  764. }
  765. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  766. mksv := make([]uintRv, len(mks))
  767. for i, k := range mks {
  768. v := &mksv[i]
  769. v.r = k
  770. v.v = k.Uint()
  771. }
  772. sort.Sort(uintRvSlice(mksv))
  773. for i := range mksv {
  774. if elemsep {
  775. ee.WriteMapElemKey()
  776. }
  777. ee.EncodeUint(mksv[i].v)
  778. if elemsep {
  779. ee.WriteMapElemValue()
  780. }
  781. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  782. }
  783. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  784. mksv := make([]intRv, len(mks))
  785. for i, k := range mks {
  786. v := &mksv[i]
  787. v.r = k
  788. v.v = k.Int()
  789. }
  790. sort.Sort(intRvSlice(mksv))
  791. for i := range mksv {
  792. if elemsep {
  793. ee.WriteMapElemKey()
  794. }
  795. ee.EncodeInt(mksv[i].v)
  796. if elemsep {
  797. ee.WriteMapElemValue()
  798. }
  799. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  800. }
  801. case reflect.Float32:
  802. mksv := make([]floatRv, len(mks))
  803. for i, k := range mks {
  804. v := &mksv[i]
  805. v.r = k
  806. v.v = k.Float()
  807. }
  808. sort.Sort(floatRvSlice(mksv))
  809. for i := range mksv {
  810. if elemsep {
  811. ee.WriteMapElemKey()
  812. }
  813. ee.EncodeFloat32(float32(mksv[i].v))
  814. if elemsep {
  815. ee.WriteMapElemValue()
  816. }
  817. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  818. }
  819. case reflect.Float64:
  820. mksv := make([]floatRv, len(mks))
  821. for i, k := range mks {
  822. v := &mksv[i]
  823. v.r = k
  824. v.v = k.Float()
  825. }
  826. sort.Sort(floatRvSlice(mksv))
  827. for i := range mksv {
  828. if elemsep {
  829. ee.WriteMapElemKey()
  830. }
  831. ee.EncodeFloat64(mksv[i].v)
  832. if elemsep {
  833. ee.WriteMapElemValue()
  834. }
  835. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  836. }
  837. case reflect.Struct:
  838. if rv.Type() == timeTyp {
  839. mksv := make([]timeRv, len(mks))
  840. for i, k := range mks {
  841. v := &mksv[i]
  842. v.r = k
  843. v.v = rv2i(k).(time.Time)
  844. }
  845. sort.Sort(timeRvSlice(mksv))
  846. for i := range mksv {
  847. if elemsep {
  848. ee.WriteMapElemKey()
  849. }
  850. ee.EncodeTime(mksv[i].v)
  851. if elemsep {
  852. ee.WriteMapElemValue()
  853. }
  854. e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
  855. }
  856. break
  857. }
  858. fallthrough
  859. default:
  860. // out-of-band
  861. // first encode each key to a []byte first, then sort them, then record
  862. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  863. e2 := NewEncoderBytes(&mksv, e.hh)
  864. mksbv := make([]bytesRv, len(mks))
  865. for i, k := range mks {
  866. v := &mksbv[i]
  867. l := len(mksv)
  868. e2.MustEncode(k)
  869. v.r = k
  870. v.v = mksv[l:]
  871. }
  872. sort.Sort(bytesRvSlice(mksbv))
  873. for j := range mksbv {
  874. if elemsep {
  875. ee.WriteMapElemKey()
  876. }
  877. e.asis(mksbv[j].v)
  878. if elemsep {
  879. ee.WriteMapElemValue()
  880. }
  881. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
  882. }
  883. }
  884. }
  885. // // --------------------------------------------------
  886. type encWriterSwitch struct {
  887. wi *ioEncWriter
  888. wb bytesEncAppender
  889. wx bool // if bytes, wx=true
  890. esep bool // whether it has elem separators
  891. isas bool // whether e.as != nil
  892. js bool // here, so that no need to piggy back on *codecFner for this
  893. be bool // here, so that no need to piggy back on *codecFner for this
  894. _ [3]byte // padding
  895. _ [2]uint64 // padding
  896. }
  897. /*
  898. func (z *encWriterSwitch) writeb(s []byte) {
  899. if z.wx {
  900. z.wb.writeb(s)
  901. } else {
  902. z.wi.writeb(s)
  903. }
  904. }
  905. func (z *encWriterSwitch) writestr(s string) {
  906. if z.wx {
  907. z.wb.writestr(s)
  908. } else {
  909. z.wi.writestr(s)
  910. }
  911. }
  912. func (z *encWriterSwitch) writen1(b1 byte) {
  913. if z.wx {
  914. z.wb.writen1(b1)
  915. } else {
  916. z.wi.writen1(b1)
  917. }
  918. }
  919. func (z *encWriterSwitch) writen2(b1, b2 byte) {
  920. if z.wx {
  921. z.wb.writen2(b1, b2)
  922. } else {
  923. z.wi.writen2(b1, b2)
  924. }
  925. }
  926. func (z *encWriterSwitch) atEndOfEncode() {
  927. if z.wx {
  928. z.wb.atEndOfEncode()
  929. } else {
  930. z.wi.atEndOfEncode()
  931. }
  932. }
  933. */
  934. // An Encoder writes an object to an output stream in the codec format.
  935. type Encoder struct {
  936. panicHdl
  937. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  938. e encDriver
  939. // NOTE: Encoder shouldn't call it's write methods,
  940. // as the handler MAY need to do some coordination.
  941. w encWriter
  942. // bw *bufio.Writer
  943. as encDriverAsis
  944. err error
  945. // ---- cpu cache line boundary?
  946. encWriterSwitch
  947. // ---- cpu cache line boundary?
  948. h *BasicHandle
  949. codecFnPooler
  950. ci set
  951. // ---- writable fields during execution --- *try* to keep in sep cache line
  952. // ---- cpu cache line boundary?
  953. // b [scratchByteArrayLen]byte
  954. // _ [cacheLineSize - scratchByteArrayLen]byte // padding
  955. b [cacheLineSize - 0]byte // used for encoding a chan or (non-addressable) array of bytes
  956. }
  957. // NewEncoder returns an Encoder for encoding into an io.Writer.
  958. //
  959. // For efficiency, Users are encouraged to pass in a memory buffered writer
  960. // (eg bufio.Writer, bytes.Buffer).
  961. func NewEncoder(w io.Writer, h Handle) *Encoder {
  962. e := newEncoder(h)
  963. e.Reset(w)
  964. return e
  965. }
  966. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  967. // into a byte slice, using zero-copying to temporary slices.
  968. //
  969. // It will potentially replace the output byte slice pointed to.
  970. // After encoding, the out parameter contains the encoded contents.
  971. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  972. e := newEncoder(h)
  973. e.ResetBytes(out)
  974. return e
  975. }
  976. func newEncoder(h Handle) *Encoder {
  977. e := &Encoder{h: h.getBasicHandle(), err: errEncoderNotInitialized}
  978. e.hh = h
  979. e.esep = h.hasElemSeparators()
  980. return e
  981. }
  982. func (e *Encoder) resetCommon() {
  983. // e.w = &e.encWriterSwitch
  984. if e.e == nil || e.hh.recreateEncDriver(e.e) {
  985. e.e = e.hh.newEncDriver(e)
  986. e.as, e.isas = e.e.(encDriverAsis)
  987. // e.cr, _ = e.e.(containerStateRecv)
  988. }
  989. e.be = e.hh.isBinary()
  990. _, e.js = e.hh.(*JsonHandle)
  991. e.e.reset()
  992. e.err = nil
  993. }
  994. // Reset resets the Encoder with a new output stream.
  995. //
  996. // This accommodates using the state of the Encoder,
  997. // where it has "cached" information about sub-engines.
  998. func (e *Encoder) Reset(w io.Writer) {
  999. if w == nil {
  1000. return
  1001. }
  1002. if e.wi == nil {
  1003. e.wi = new(ioEncWriter)
  1004. }
  1005. var ok bool
  1006. e.wx = false
  1007. e.wi.w = w
  1008. if e.h.WriterBufferSize > 0 {
  1009. bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
  1010. e.wi.bw = bw
  1011. e.wi.sw = bw
  1012. e.wi.fw = bw
  1013. e.wi.ww = bw
  1014. } else {
  1015. if e.wi.bw, ok = w.(io.ByteWriter); !ok {
  1016. e.wi.bw = e.wi
  1017. }
  1018. if e.wi.sw, ok = w.(ioEncStringWriter); !ok {
  1019. e.wi.sw = e.wi
  1020. }
  1021. e.wi.fw, _ = w.(ioFlusher)
  1022. e.wi.ww = w
  1023. }
  1024. e.w = e.wi
  1025. e.resetCommon()
  1026. }
  1027. // ResetBytes resets the Encoder with a new destination output []byte.
  1028. func (e *Encoder) ResetBytes(out *[]byte) {
  1029. if out == nil {
  1030. return
  1031. }
  1032. var in []byte
  1033. if out != nil {
  1034. in = *out
  1035. }
  1036. if in == nil {
  1037. in = make([]byte, defEncByteBufSize)
  1038. }
  1039. e.wx = true
  1040. e.wb.reset(in, out)
  1041. e.w = &e.wb
  1042. e.resetCommon()
  1043. }
  1044. // Encode writes an object into a stream.
  1045. //
  1046. // Encoding can be configured via the struct tag for the fields.
  1047. // The key (in the struct tags) that we look at is configurable.
  1048. //
  1049. // By default, we look up the "codec" key in the struct field's tags,
  1050. // and fall bak to the "json" key if "codec" is absent.
  1051. // That key in struct field's tag value is the key name,
  1052. // followed by an optional comma and options.
  1053. //
  1054. // To set an option on all fields (e.g. omitempty on all fields), you
  1055. // can create a field called _struct, and set flags on it. The options
  1056. // which can be set on _struct are:
  1057. // - omitempty: so all fields are omitted if empty
  1058. // - toarray: so struct is encoded as an array
  1059. // - int: so struct key names are encoded as signed integers (instead of strings)
  1060. // - uint: so struct key names are encoded as unsigned integers (instead of strings)
  1061. // - float: so struct key names are encoded as floats (instead of strings)
  1062. // More details on these below.
  1063. //
  1064. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  1065. // - the field's tag is "-", OR
  1066. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  1067. //
  1068. // When encoding as a map, the first string in the tag (before the comma)
  1069. // is the map key string to use when encoding.
  1070. // ...
  1071. // This key is typically encoded as a string.
  1072. // However, there are instances where the encoded stream has mapping keys encoded as numbers.
  1073. // For example, some cbor streams have keys as integer codes in the stream, but they should map
  1074. // to fields in a structured object. Consequently, a struct is the natural representation in code.
  1075. // For these, configure the struct to encode/decode the keys as numbers (instead of string).
  1076. // This is done with the int,uint or float option on the _struct field (see above).
  1077. //
  1078. // However, struct values may encode as arrays. This happens when:
  1079. // - StructToArray Encode option is set, OR
  1080. // - the tag on the _struct field sets the "toarray" option
  1081. // Note that omitempty is ignored when encoding struct values as arrays,
  1082. // as an entry must be encoded for each field, to maintain its position.
  1083. //
  1084. // Values with types that implement MapBySlice are encoded as stream maps.
  1085. //
  1086. // The empty values (for omitempty option) are false, 0, any nil pointer
  1087. // or interface value, and any array, slice, map, or string of length zero.
  1088. //
  1089. // Anonymous fields are encoded inline except:
  1090. // - the struct tag specifies a replacement name (first value)
  1091. // - the field is of an interface type
  1092. //
  1093. // Examples:
  1094. //
  1095. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  1096. // type MyStruct struct {
  1097. // _struct bool `codec:",omitempty"` //set omitempty for every field
  1098. // Field1 string `codec:"-"` //skip this field
  1099. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  1100. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  1101. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  1102. // io.Reader //use key "Reader".
  1103. // MyStruct `codec:"my1" //use key "my1".
  1104. // MyStruct //inline it
  1105. // ...
  1106. // }
  1107. //
  1108. // type MyStruct struct {
  1109. // _struct bool `codec:",toarray"` //encode struct as an array
  1110. // }
  1111. //
  1112. // type MyStruct struct {
  1113. // _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
  1114. // Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
  1115. // Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
  1116. // }
  1117. //
  1118. // The mode of encoding is based on the type of the value. When a value is seen:
  1119. // - If a Selfer, call its CodecEncodeSelf method
  1120. // - If an extension is registered for it, call that extension function
  1121. // - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
  1122. // - Else encode it based on its reflect.Kind
  1123. //
  1124. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  1125. // Some formats support symbols (e.g. binc) and will properly encode the string
  1126. // only once in the stream, and use a tag to refer to it thereafter.
  1127. func (e *Encoder) Encode(v interface{}) (err error) {
  1128. defer e.deferred(&err)
  1129. e.MustEncode(v)
  1130. return
  1131. }
  1132. // MustEncode is like Encode, but panics if unable to Encode.
  1133. // This provides insight to the code location that triggered the error.
  1134. func (e *Encoder) MustEncode(v interface{}) {
  1135. if e.err != nil {
  1136. panic(e.err)
  1137. }
  1138. e.encode(v)
  1139. e.e.atEndOfEncode()
  1140. e.w.atEndOfEncode()
  1141. e.alwaysAtEnd()
  1142. }
  1143. func (e *Encoder) deferred(err1 *error) {
  1144. e.alwaysAtEnd()
  1145. if recoverPanicToErr {
  1146. if x := recover(); x != nil {
  1147. panicValToErr(e, x, err1)
  1148. panicValToErr(e, x, &e.err)
  1149. }
  1150. }
  1151. }
  1152. // func (e *Encoder) alwaysAtEnd() {
  1153. // e.codecFnPooler.alwaysAtEnd()
  1154. // }
  1155. func (e *Encoder) encode(iv interface{}) {
  1156. if iv == nil || definitelyNil(iv) {
  1157. e.e.EncodeNil()
  1158. return
  1159. }
  1160. if v, ok := iv.(Selfer); ok {
  1161. v.CodecEncodeSelf(e)
  1162. return
  1163. }
  1164. // a switch with only concrete types can be optimized.
  1165. // consequently, we deal with nil and interfaces outside.
  1166. switch v := iv.(type) {
  1167. case Raw:
  1168. e.rawBytes(v)
  1169. case reflect.Value:
  1170. e.encodeValue(v, nil, true)
  1171. case string:
  1172. e.e.EncodeString(cUTF8, v)
  1173. case bool:
  1174. e.e.EncodeBool(v)
  1175. case int:
  1176. e.e.EncodeInt(int64(v))
  1177. case int8:
  1178. e.e.EncodeInt(int64(v))
  1179. case int16:
  1180. e.e.EncodeInt(int64(v))
  1181. case int32:
  1182. e.e.EncodeInt(int64(v))
  1183. case int64:
  1184. e.e.EncodeInt(v)
  1185. case uint:
  1186. e.e.EncodeUint(uint64(v))
  1187. case uint8:
  1188. e.e.EncodeUint(uint64(v))
  1189. case uint16:
  1190. e.e.EncodeUint(uint64(v))
  1191. case uint32:
  1192. e.e.EncodeUint(uint64(v))
  1193. case uint64:
  1194. e.e.EncodeUint(v)
  1195. case uintptr:
  1196. e.e.EncodeUint(uint64(v))
  1197. case float32:
  1198. e.e.EncodeFloat32(v)
  1199. case float64:
  1200. e.e.EncodeFloat64(v)
  1201. case time.Time:
  1202. e.e.EncodeTime(v)
  1203. case []uint8:
  1204. e.e.EncodeStringBytes(cRAW, v)
  1205. case *Raw:
  1206. e.rawBytes(*v)
  1207. case *string:
  1208. e.e.EncodeString(cUTF8, *v)
  1209. case *bool:
  1210. e.e.EncodeBool(*v)
  1211. case *int:
  1212. e.e.EncodeInt(int64(*v))
  1213. case *int8:
  1214. e.e.EncodeInt(int64(*v))
  1215. case *int16:
  1216. e.e.EncodeInt(int64(*v))
  1217. case *int32:
  1218. e.e.EncodeInt(int64(*v))
  1219. case *int64:
  1220. e.e.EncodeInt(*v)
  1221. case *uint:
  1222. e.e.EncodeUint(uint64(*v))
  1223. case *uint8:
  1224. e.e.EncodeUint(uint64(*v))
  1225. case *uint16:
  1226. e.e.EncodeUint(uint64(*v))
  1227. case *uint32:
  1228. e.e.EncodeUint(uint64(*v))
  1229. case *uint64:
  1230. e.e.EncodeUint(*v)
  1231. case *uintptr:
  1232. e.e.EncodeUint(uint64(*v))
  1233. case *float32:
  1234. e.e.EncodeFloat32(*v)
  1235. case *float64:
  1236. e.e.EncodeFloat64(*v)
  1237. case *time.Time:
  1238. e.e.EncodeTime(*v)
  1239. case *[]uint8:
  1240. e.e.EncodeStringBytes(cRAW, *v)
  1241. default:
  1242. if !fastpathEncodeTypeSwitch(iv, e) {
  1243. // checkfastpath=true (not false), as underlying slice/map type may be fast-path
  1244. e.encodeValue(reflect.ValueOf(iv), nil, true)
  1245. }
  1246. }
  1247. }
  1248. func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
  1249. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1250. var sptr uintptr
  1251. var rvp reflect.Value
  1252. var rvpValid bool
  1253. TOP:
  1254. switch rv.Kind() {
  1255. case reflect.Ptr:
  1256. if rv.IsNil() {
  1257. e.e.EncodeNil()
  1258. return
  1259. }
  1260. rvpValid = true
  1261. rvp = rv
  1262. rv = rv.Elem()
  1263. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1264. // TODO: Movable pointers will be an issue here. Future problem.
  1265. sptr = rv.UnsafeAddr()
  1266. break TOP
  1267. }
  1268. goto TOP
  1269. case reflect.Interface:
  1270. if rv.IsNil() {
  1271. e.e.EncodeNil()
  1272. return
  1273. }
  1274. rv = rv.Elem()
  1275. goto TOP
  1276. case reflect.Slice, reflect.Map:
  1277. if rv.IsNil() {
  1278. e.e.EncodeNil()
  1279. return
  1280. }
  1281. case reflect.Invalid, reflect.Func:
  1282. e.e.EncodeNil()
  1283. return
  1284. }
  1285. if sptr != 0 && (&e.ci).add(sptr) {
  1286. e.errorf("circular reference found: # %d", sptr)
  1287. }
  1288. if fn == nil {
  1289. rt := rv.Type()
  1290. // always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
  1291. fn = e.cfer().get(rt, checkFastpath, true)
  1292. }
  1293. if fn.i.addrE {
  1294. if rvpValid {
  1295. fn.fe(e, &fn.i, rvp)
  1296. } else if rv.CanAddr() {
  1297. fn.fe(e, &fn.i, rv.Addr())
  1298. } else {
  1299. rv2 := reflect.New(rv.Type())
  1300. rv2.Elem().Set(rv)
  1301. fn.fe(e, &fn.i, rv2)
  1302. }
  1303. } else {
  1304. fn.fe(e, &fn.i, rv)
  1305. }
  1306. if sptr != 0 {
  1307. (&e.ci).remove(sptr)
  1308. }
  1309. }
  1310. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1311. if fnerr != nil {
  1312. panic(fnerr)
  1313. }
  1314. if bs == nil {
  1315. e.e.EncodeNil()
  1316. } else if asis {
  1317. e.asis(bs)
  1318. } else {
  1319. e.e.EncodeStringBytes(c, bs)
  1320. }
  1321. }
  1322. func (e *Encoder) asis(v []byte) {
  1323. if e.isas {
  1324. e.as.EncodeAsis(v)
  1325. } else {
  1326. e.w.writeb(v)
  1327. }
  1328. }
  1329. func (e *Encoder) rawBytes(vv Raw) {
  1330. v := []byte(vv)
  1331. if !e.h.Raw {
  1332. e.errorf("Raw values cannot be encoded: %v", v)
  1333. }
  1334. e.asis(v)
  1335. }
  1336. func (e *Encoder) wrapErr(v interface{}, err *error) {
  1337. *err = encodeError{codecError{name: e.hh.Name(), err: v}}
  1338. }